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Supplementary Information – Computational Methods 

Data preprocessing 

In this section we describe the preprocessing steps taken to establish the data matrix of 

hepatocyte single cell gene expression data (Table S1). The main steps were the removal 

of non-parenchymal cells and the subtraction of background signal for each gene. Such 

background is predominantly caused by barcode switching and sequencing errors
1
. The 

resulting data matrix consisted of 𝐺 = 27297 genes and 𝑁 = 1415 cells. Each cell in the 

matrix held the UMI count of gene 𝑔 in cell 𝑐, denoted 𝑈𝑀𝐼𝑔
𝑐. 

As a first preprocessing step, we removed non-parenchymal cells. To this end we 

considered cell-type specific sets of genes – the Kupffer cell genes: Clec4f, Csf1r, C1qc, 

C1qa and C1qb, the endothelial cell genes: Kdr, Egfl7, Igfbp7 and Aqp1, and the 

hepatocyte genes: Apoa1, Apob, Pck1, G6pc and Ttr. Cells for which the aggregated 

transcript counts of either the Kupffer set or the endothelial set exceeded the aggregated 

counts of the hepatocyte set were removed from further analysis.  We next calculated the 

background expression level for each gene, based on wells in which RNA extraction or 

amplification failed. These were defined as wells for which the aggregated sum of all 

ERCC spike-in molecules was greater than 0.04 of the aggregated sum of the non-ERCC 

molecules. These wells invariably included the four empty wells in each plate. The 

background expression of each gene was then set to the mean number of molecules 

across all background cells, and was subtracted from the expression of that gene in the 

remaining cells. Negative counts were set to zero. 

Following subtraction of background levels, we filtered-out cells with total 

number of molecules smaller than 1000 UMI or larger than 30,000 UMI. Finally, we 
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discarded cells in which the expression level of Albumin was lower than 1% of the total 

cellular UMI. This threshold was chosen based on previous bulk estimates that estimated 

the average Albumin gene expression to be ~10% of the total number of hepatocyte 

cellular mRNA
2
, and our findings using smFISH that Albumin levels rarely decreased 

below 10% of this average. Our preprocessing steps yielded 1415 high-confidence 

hepatocytes.  

 

Algorithm for spatial reconstruction of liver zonation profiles 

In this section we describe our algorithm for reconstructing zonation profiles by 

combining smFISH measurements of landmark genes and single cell RNAseq 

measurements. Inference of spatial coordinates of cells from single cell RNAseq and 

traditional binary in-situ hybridization have been recently described
3,4

. Our method 

differs from these studies in two main aspects: 1) Here we used single molecule FISH 

rather than traditional FISH, yielding precise continuous cellular gene expression levels 

of individual cells at defined spatial coordinates, rather than binary expression. 2) While 

our inference provides the estimated lobule position of each cell, our main goal is 

reconstruction of zonation profiles. We thus utilize the complete posterior probability 

vectors of cells to belong to any coordinate, thus maximizing the information used to 

reconstruct these profiles. 

 

1. Lobule geometry 

For simplicity we considered one-dimensional lobule geometry, where lobules consist of 

hexagonal shaped columns with infinite height and radial symmetry. We further assumed 
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that the relevant coordinate is the distance of each cell from the closest central vein, 

discretized into 9 lobule layers (layer 𝑧 =1 begins at the central vein whereas layer 𝑧 =9 

ends at the portal node). More complicated topologies that include additional dimensions, 

such as distance of each cell to the closest portal node / portal tract or vertical distance 

along the lobule column can be considered in future work. Our topology defines a prior 

probability of sampling a cell at lobule layer 𝑧, 𝑃𝑝𝑟𝑖𝑜𝑟(𝑧) (Extended Data Fig. 3c,d). 

 

2. Probabilistic reconstruction of zonation profiles 

Our goal was to infer the gene zonation matrix, which held the average expression level 

(in fraction of total cellular mRNA) attributed to every gene 𝑔 at lobule layer 𝑧, i.e. 𝐸𝑔,𝑧. 

Since the RNA yield in scRNAseq experiments is variable among cells, we normalized 

the background subtracted expression matrix 𝑈𝑀𝐼𝑔
𝑐 by dividing the number of UMI of 

each gene in each cell by the total number of UMI for that cell to obtain the data matrix: 

[1]𝐷𝑔,𝑐 = 𝑈𝑀𝐼𝑔
𝑐/∑ 𝑈𝑀𝐼𝑔

𝑐𝐺
𝑔=1   

with 𝑔=1..G genes and 𝑐=1.. 𝑁 cells (𝐺=27297 and 𝑁=1415). This normalization 

facilitated pooling multiple cells to estimate the average expression in each lobule layer. 

To compute the gene zonation matrix, we multiplied the data matrix 𝐷𝑔,𝑐 (the 

expression of each gene in each cell) by a weighted probability matrix, 𝑊𝑐,𝑧 (the weighted 

probability for each cell to be at each zone), 

[2]𝐸𝑔,𝑧 = 𝐷𝑔,𝑐 ∙ 𝑊𝑐,𝑧 ,  

where we used bootstrapping to obtain standard errors for the mean zonation profiles. 
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The key step in our algorithm was to estimate weighted probability matrix, 𝑊𝑐,𝑧. 

To this end we estimated the posterior probability matrix: 

[3]𝑃𝑐,𝑧 = 𝑃𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
𝑐 (𝑧) =

𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
𝑐 (𝑈𝑐⃗⃗ ⃗⃗  |𝑧) ∙ 𝑃𝑝𝑟𝑖𝑜𝑟(𝑧)

∑ 𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
𝑐 (𝑈𝑐⃗⃗ ⃗⃗  |𝑧) ∙ 𝑃𝑝𝑟𝑖𝑜𝑟(𝑧)

9
𝑧=1

 

The matrix 𝑃𝑐,𝑧 describes the probability of each cell to belong to each lobule layer 𝑧, 

given the vector of expression of the 6 landmark genes 𝑈𝑐⃗⃗ ⃗⃗  = {𝑈1
𝑐, … , 𝑈6

𝑐}. It consists of 

𝑁 rows representing cells and 𝑍 columns representing lobule layers (𝑁=1415 and 𝑍=9, 

Table S2).   

For each cell, the posterior probability is the product of the sampling distribution, 

namely the probability to have the given landmark gene expression vector at each layer, 

𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
𝑐 (𝑈𝑐⃗⃗ ⃗⃗  |𝑧), and the prior probability of the cell to belong to that layer, 𝑃𝑝𝑟𝑖𝑜𝑟(𝑧), 

see Extended Data Fig. 3. The sampling distribution was obtained by measuring the 

distributions of cellular expression of each of the landmark genes in each layer using 

smFISH, 𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
𝑐 (𝑈𝑐⃗⃗ ⃗⃗  |𝑧) = ∏ 𝑃(𝑈𝑔

𝑐|𝑧)6
𝑔=1 , assuming that the expression of the 

landmark genes is independent  (for further details, see section 3). 

The sampling distribution encapsulates both the gene-specific uncertainty 

introduced by the spatial variability in gene expression, as well as the cell-specific 

sampling uncertainty introduced by the sparse sampling of the scRNAseq method. Lastly, 

we normalized the posterior matrix by the column sums to obtain the weight matrix: 

[4]𝑊𝑐,𝑧 =
𝑃𝑐,𝑧

∑ 𝑃𝑐,𝑧
𝑁
𝑐=1
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This normalization ensured that the number of cells in each lobule layer did not affect the 

average layer expression. We next describe our method for obtaining the sampling 

distribution 𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(�⃗⃗� |𝑧) that was used to obtain the weight matrix 𝑊𝑐,𝑧. 

 

3. Computing the sampling distribution based on smFISH measurements  

Since RNAseq yields a sparse sampling of the cellular mRNA we chose genes with high 

levels of expression for our landmark gene panel, to ensure their representation in each of 

the sequenced cells. As a result, individual mRNA molecules could rarely be discerned in 

the smFISH images. Thus, we quantified expression as average cellular fluorescence 

intensity, and converted it to estimates of cellular mRNA counts, as explained below. 

For each of our landmark genes, segmented cells from the smFISH images were 

pooled and divided into 9 equidistant layers according to their normalized distance from 

the central vein. At every layer 𝑧 we computed the histogram of expression levels, 

yielding the sampling distribution in units of fluorescence intensity concentrations 

 𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐼𝑔|𝑧), where 𝐼𝑔 is the cellular fluorescence intensity of gene 𝑔. The 

normalized distance was defined as the ratio between the distance of each cell from the 

central vein and the distance between the portal node and central vein in each quantified 

lobule. This normalization corrected for lobules that were not sectioned perpendicularly 

to the lobule vertical axis.  

We sought to convert the distributions of cellular expression levels from units of 

fluorescence intensity to absolute mRNA counts per cell. To this end, we first used our 

RNAseq data to compute the average fraction of total cellular mRNA attributed to each 

of our landmark genes 〈𝐹𝑔〉. We multiplied this fraction by an estimate of the total 
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number of mRNA molecules in a tetraploid hepatocyte (the most abundant hepatocyte 

ploidy class in the mouse ages studied
5
),  T, to obtain the average number of mRNA 

molecules of gene 𝑔 in a tetraploid hepatocyte, 〈𝑀𝑔〉 = 〈𝐹𝑔〉 ∙ 𝑇. The cellular fluorescence 

intensity of each cell was divided by the average fluorescence intensity over all cells and 

multiplied by 〈𝑀𝑔〉: 

[5]𝑀𝑔
𝑐 =

𝐼𝑔
𝑐

〈𝐼𝑔〉
∙ 〈𝑀𝑔〉 

Using equation [5] and the normalized distance of each cell we obtained the 

sampling distribution in units of absolute mRNA molecules  𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑔|𝑧). We fit 

these sampling distributions with gamma functions (Table S7). 

  To estimate T, the average total number of mRNA molecules in a tetraploid 

hepatocyte, we used previous smFISH-based absolute measurements of the steady state 

cellular mRNA content for the genes Ass1, G6pc and Pck1 in liver of fasted mice
5
. We 

divided the average mRNA content of these genes by their corresponding fraction of the 

total transcriptome, as obtained from bulk RNAseq measurements of liver tissue
2
. This 

analysis yielded an estimate of 787,000 mRNA molecules per typical tetraploid 

hepatocyte.  

 In the RNAseq procedure, we do not detect all mRNA molecules but only a 

subsample of them. Subsampling the cellular mRNA broadens the distributions of 

expression levels. A key feature of our algorithm is that cells with lower levels of 

sampling have broader sampling distributions due to sampling noise, and therefore 

contribute less to the reconstructed zonation profiles (since their corresponding values in 

𝑊𝑐,𝑧 used in equation [4] will be smaller). To incorporate this feature we sought to 
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estimate a cell-specific sampling distribution, 𝑃(𝑈𝑔
𝑐|𝑧) defined as the probability of 

observing 𝑈𝑔 molecules of gene 𝑔 in cell 𝑐 in each zone z, given that a sparse sampling 

of a fraction 𝛽𝑐 of the cellular molecules has been applied. We first estimated 𝛽𝑐 for each 

cell, as the ratio between the total UMI molecules for that cell and the average number of 

mRNA molecules per hepatocyte 𝑇. The range of sampling levels was  𝛽𝑐 = 1.49% ±

0.95%.  

For computational efficiency we discretized the sampling levels into 8 bins 

representing cells with similar sampling levels and computed a median sampling for that 

bin, defined as 𝛽𝑑 , 𝑑 = 1…8. For each sampling bin we built the sampling distributions 

as follows – for every landmark gene 𝑔 in every lobule layer we drew 50,000 values, 𝑀𝑔  

from the relevant gamma distribution of cellular mRNA expression in that 

layer  𝑃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑔|𝑧) (Table S7) and performed a Poisson sampling of this value with 

parameter 𝜆 = 𝛽𝑑 ∙ 𝜈 ∙ 𝑀𝑔  to obtain the sampled value 𝑚𝑔 . 𝜈 = 10 was a factor that 

corrected for the fact that the smFISH measurements do not capture the entire hepatocyte 

volume, but rather 0.1 ± 0.04 (median ± median absolute deviation) of the hepatocyte 

volumes, and therefore represents by itself a sampling which broadens the true 

distribution of cellular mRNA
5
. We multiplied the obtained sampled values 𝑚𝑔  by 

𝛽𝑐

𝛽𝑑 ∙
1

𝜈
, 

to ensure that they matched the cellular UMI modeled. This generated the sampling 

distribution 𝑃(𝑈𝑔
𝑐|𝑧), used in equation [3] to generate for each cell 𝑐 the posterior 

probability 𝑃𝑐,𝑧 of originating from any of the 𝑧 = 1…9 layers. 

 

Data visualization 
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For the tSNE data visualization (Fig. 3a,b, Extended Data Fig. 2) we used an adjusted 

version of RaceID software
6
, on all of the single liver cells acquired, including the non-

parenchymal cells filtered out (see Data Preprocessing section). We excluded hepatocytes 

with less than 1% Albumin out of the total transcript counts. We also excluded cells with 

less than 600 or more than 50,000 UMI per cell. For each cell the UMI counts of every 

gene were divided by the summed UMI count of all genes, and multiplied by the median 

across all cells. Following addition of a pseudocount of 0.1 to the expression data, genes 

that contained less than a single transcript or more than 1000 transcripts in at least 1100 

cells were removed. Additionally, genes that had more than 1000 transcripts in any cell 

after normalization, were removed as well, resulting in 1724 cells and 753 genes. 

Dimensionality reduction and visualization were performed with t-distributed stochastic 

neighbor embedding (t-SNE
7
). Selected gene sets were colored according to the 

aggregated log-expression of the normalized data.  
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